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THEORY OF PLANE, SYMMETRICAI INLET DIFFUSERS*

By Walter Brddel
PART I

I - THE THREE-PARAMETRICAT GROUP OF THE INTAKE DIFFUSERS

1l - Introduction

The present report tles in with the Investigatlons on inlet diffusers
by P. Ruden. The theory developed by Ruden (referemce 1) had produced
results which found excellent confirmation in wind-tunnel tests (refer-
ence 2) and in spite of certain stilll-existing defects, are technically
very promising. The reasons for the new theory of the diffuser forms
indicated by Ruden are twofold: <first, the arguments adduced in refer-
ence 1 deal only with one specific operating condltlon, that is, a certain
ratio of mean veloclty within the diffuser to flylng speed, while in the
present report any deslred velocity ratios are Involved; second, a
different choice of parameters and the lncreased posslbllitles of
variations result in diffuser forms which cannot be reconclled at once
with Ruden's theory. The first enables & theoretical check of the
measurements made wlth Ruden's diffusers at variable velocity ratio, the
second. permits the calculatlion of diffuser types which in many respects
are superior to Ruden's diffusers.

So, while the present report seems to be a supplement and continuation
of Ruden's report (reference 1), it 1s nevertheless a study by itself
and does not rest on the previous knowledge of Ruden's theory, with
exception of the first part of section 6. The aerodynamic problem involved
is the following (reference 1, page 3):

A certain volume of ailr from the alr stream is to be intercepted
and by conversion of speed to pressure or pressure Into speed to be
conveyed to certain airplane accessory devices. The manner in which the

W
ratlo of the velocity inside the diffuser to flying speed ;; 1s regulated

-]

is not involved here; the most important thing is to find the best possible

*"Zyr Theorie ebner, symmetrischer Fangdiffusoren." Zentrale f£ir
wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluft-

zeugmelisters (ZWB), Berlin-Adlershof, Forschungsbericht Nr. 1475/1
and 2, September 20 19h41.
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shape for the contour of the nose. This, on the other hand, postulates

that the usually inevitable increases of speed be as low as possible, and

alsoc that the wall thickness of the device be a minimum. It is found that

these two requirementys are in a certain contrast to each other; generally
speaking, a reduction of the increase of speed at the diffusers in question

cen be attained only by an lncrease in wall thickmess. One of the princi-

pal tasks 1s to analyze this relationship. -

In conformlty with reference 1, the followlng ldeallzations
are eoffected: The flow 1s assumed to be Incompressible and perfect,
so that 1t can be represented in the conventional msnner by analytlcal
functlons of a complex variable; the diffuser is assumed to extend to
infinity 1In flow directionm.

2 - Hydrodynamic Mapping And Introduction of the -

Parallel Strip as Reference Aresa

Figure 1 represents the contours of a plane, symmetrical inlet
diffuser and at the same time Indicates the qualitatlve performance of -
a corresponding flow. The problem 1s to change over from'thls schematic
figure to a quantitative one. This is accompllished by the method of

hydrodynamic mapping.

Hydrodynamic mapping 1s, as 1s known, conformael mepping in which
one space, along with the flow in that space, 1s transformed into
another. Three functlons are involved in the analytlcal representation:
The stream function (the complex stream potential) F(z) of the original
space, the mapping function §(z) which 1s considered to teke a space
on the z-plane to a. space on the {-plane, and the stream function ¢(¢)
of the transformed region; F(z) = ¢({), that 1s, the values of the
gtream function are simply transplanted from the z- to the {-plane.

The "complex velocities" w(z) and w(¢) are given by w = %g and

w = %% and related accordingly by

wdz =w df
or ) (1)
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It is to be borme in mind that only the conjugete complex value of
the "complex velocity" represents the velocity vector.

A flow defined by an analytical function F(z) can be mapped
hydrodynamically in a number of ways. The two most frequently employed
mapping methods are:

(1) ¢ = F(z), in which case @({) =, that 1s, the mapped space
slmply contains the basic flow, & horizontally directed parallel flow
with the constent veloclity 1. Any flow can thus be transformed to the
basic flow.

(2) ¢ = Q%ﬁzl = w(z). This is the hodograph mapping method
successfully applled by Ruden to the inlet diffuser problem.

In the following, a dlfferent mapping method 1s used, since, as
pointed out in the introduction, an infinite series of stream functions
corresponding to the different veloclity ratlos wi/w;=° must be considered

for each' Inlet diffuser, rather than a single stream function, with
which, of course, the above speclal mappings are invalldated. The image
gpace 1s so chosen that the group of stresam functlons permits the
simplest possible representation. A few trials confirm that the parallel
strip affords the simplest solution.

Assume that the function {(z) maps the simply comnected space
situated outside the contour of the Inlet diffuser single-valued and
conformally on to & parallel strip bounded by the straight line T(£) = i«
The line of symmetry of the z-space, taken parallel to the real axis,
is to become the real axls of the {-plane, and the direction
of flow ls to remain the same, In the z-plane the line
of symmetry connects the two infinitely remote boundary polnts of the
space; they become wilth their surroundings the two tips of the parallel
strip. Figure 2 represents the flow in the { -plane diagrammatically;
the general function &({) which produces such & flow is. given by

2() = cat - cpe™ (e > 0, cp > 0) (2)

To find this expression, the -parallel strip is mapped by e§ =&;

on the plane cut along the negative half of the real axis

and the flows arising in the {-plane calculated. Since & '({) by
anslytical continuation beyond the gtrip edges obviously has the
period 2mi, the derivation of the transplanted stream function &;(67)

must be unique. TIts singularities must be looked for at O and w;
at O, corresponding to the left strip tip, & source and dipole appear
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combined, while at «, arising from the rlght tip, & sink occurs. As a
result, the general expression of ¢1(f;) can be immediately expressed

in the form @71(¢) = a log & + E_’ with positive a. -The outflow
direction of the dipole points to the right, that is, b must be negative
(real). Putting a =cj, b = -cp and reverting to the {-plane, gives
exactly the above expression.

The stagnatlon points are obtained by setting the derivatlve
equal to zero. From

o' (t) =cq + cae-§ =0

follows o7&

cl. Putting { = € + in and accordingLy

o~ = o-8in % (cos n - 1 gin 1) glves the cond1tions
g

o™ £ cos N = HSL and e~
C2

Therefore, sin n = 0, while cos 1 is negative, which in

limiting € +to the parallel strip means 1 = ix. Accordingly

c

also: e~ 5=2"L apnd &= log -2 (natural logaritim). On pubting
c c :
D 1

sin = 0 for the stagnation points.

c . c
= log -2 + i, that 1is b0 = 22 the expression for ®({) can be
o) cl J 2 cl ,

written in the form

0(t) = eaft + o760 (3)

or since no addltive constant is 1nvolved,
2(6) = ey [(€ ) + e"Ho)] (&)

The system of the streamlines is not ehanged by a change in the
constent c¢q; if {, i1s varied - obviously T({,) must remain

equal to = - the system of streamlines experilences a simple paraliel
displacement, as shown by the last equation.

o
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3 - Determination of the Differentlal Quotient of the
Functlon z({) Which Maps the Parallel Strip
on the Outside of the Inlet Diffuser

Glven the function z(f) which maps the parallel strip on the
outside of the inlet diffuser, the transplanting of the general stream
function o(¢f) makes the general stream function F(z) available. As
regards the derivation of the fumction z(f) the following may be stated:

Along the real axis, %% is, on the whole, real and
positive. Rumming through the straight line T(¢) = = from left to

right, %% assumes at first negative (real) values in correspondence

with the straight part of the contour, then, in correspondence wlth
the curved nose contour, it assumes values which geometrically expressed
belong to the lower half-plane, and lastly the values become positilve

(reel): Letting ¢ shift leftward to infinity, % must, in amount,
increase beyond all limits, while at unlimited distance toward the

right, %'ZC tends toward a finite (positive) limiting value. Further
identification 1s not possible wlthout a ceftain arbltrariness. The

following asswmption is made. Suppose quantlity %%, when { passes

through the upper right edge of the parallel strip, runs through a
line whose center piece located 1n the lower halfplane is half of an
ellipse symmetrical to the resl axis (fig. 3).

Altogether dz consldered as function in the parallel strip, glves
:EI: P)

then a conformel mapping on the shaded space represented In flgure 3.
For the first, the mapping of the total boundery follows from reasons
of symmetry, then, the inside mepping according to the principle

of the characteristlcs of the boundsry.

Of the multitude of potential diffuser forms, one series defined
by & finite number of parameters was selected. The ellipse is, for
shape and position, given by three real paremeters; the right-handed
end point of the line, that is, lim &-> + cc%z—c, gives a fourth parameter
and a fifth is ultimately afforded by the possibility of effecting
any desired parallel displacement in the f-plane in direction of the
" reel axlis. Thus flve real constants enter the general

function 42, But, since the parallel displacements in the {-plane

ag
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are unimportant and %% 1tself may be multiplied by any positive factor
without modifying the respectlve diffuser form, the factual result
1s a three-parametric continuum of inlet diffusers

The analytilcal expression of %% 1s obtained by mapping the
parellel strip through

b =00 - (5)

on the t-plane cut along the negative half of the real axis.

The right tip tekes the vicinlty of the zero point, the left tip that
of the infinitely remote point. The next problem of transplanting the
plane thus cut on the space of figure 3 1s essentlally synonymous
wlth the problem of mapplng the plane fltted wlth a finite straight
slit on the outside of an ellipse. The sg%ution is predicated on the
knowledge of the mappling attained by 2z + This functlon transforms

the outslde of the unilt circle in the plane cut along a finite

strip, and 1t maps the outside of the circle |z| =R> 1 on the outside

of the ellipse; the Infinitely distant point remains fixed. The outsilde
of the circle |z| = r < 1 changes into an elliptically bounded gpace;
this, however, lies 1n part as two-lobed space above the plane, which
1s to be avolded in the present instance. To pass from the slit area
to the outslde of an ellipse involves essentlially, that is, apart from
gimilarlity mapping, the applicatlon of the Inverse function of z + %

which gilves a circular space, then, after a second similarlty mapping,
the transfer to the elliptical boundary according to =z +-%. Through

the slmilerity mapping certealn real constents enter in the formulas,
which must be subjected to certaln restrictions in order to be certaln
to obtain an, on the whole, single-lobed image space. The mode of
calculation 1s as follows:

Assume that the end points lie at -t; end -t (to > ty > 0).
that case the slit ls widened out by

, B %
o=t + Wt + ) ( + Bp) + 5

In

Ik

[T P
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in a ciréle the center of which is the zero point of the t'-plane. This
result 1ls easily checked, because for -tp <t < -t; the square
root is purely imaeginary, and

'tl+'t',2
o1l = o+ 2 e (5 + ) (8 + 1)
2
s
=\t + === - (t+ 5% + tp)
t + |\ 2ot
) Tttt
that is, |t'| = constant. The function t" = at’ +b—,with a>0

t
and D %O, obtained from z +% by similarity mapping results in the

 general ellipse whose axes coincide with the coordinate axes. To the
right-hand end point of the dlameter of the circle, hence

. to - 7 1 n
to t' = Era— there must correspond a "positive  value, that 1s,

. -t
a2~ M, _2b >0 (6)
2 o -t
in order to prevent a two-lobed overlap of the plame at any point by the
image space. Likewise, the uppermost point of the circle,

12"t
2

must teke & point on the upper half plane, that is,

b4

ty - b
2 l__2b__ 5o (7)

& T2 -
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The prefix of b decides which of the Soordinate axes becomes the
principal axis. The desired quantity E% must generally be put equal

to 1" + ¢ (c real).

5, + ©
Localo s B0\t + t)(t + 1)

2
b -
+ +c _
t + b
1
622\t + 1) (6 + tp)
=at+ B \kt + 1) (% + t2) + 7 (8)
4
with S =
v “ ! -
d,:a,-{-—-_h-.b—-—
(tz2 - )2
ty + ¢
')’:q,_l?_g.pc > (9)
B=a___)i_—2
(to - 1)
-
The expression of %% therefore actually containg five real :
constants, which must satlsfy the following conditlons; first,
tp > t1 > 0. The conditions (6) and (7) are eguivalent to a > O,
B>0;a= ng—E ‘iteelf then becomes positive. Iastly, the
elllpse must comprise the zéro point even after the transiation - ) :
effected by the constant c¢. Thls ls the case only when the values '
of %% relating to t = -t; and t = -tp are positive and negative, :
respectively. From o ' - L X
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and

@t +7 <0

follows

ot <7y <atpy (10)

The square root must be calculated positive for positive +. In the
analytical continuation along the dissected t-~plane, the values
obtained for t < -t are negative, while the values In the

interval =~tp <t < -t1 relate to the positive and negative halfplanse,
depending upon whether the real axls 1s approached from above or below.

.- Determination of the Mapping Function Itself by
Integration. Calculation of the

Contours of the Inlet Diffuser

The function z() itself is found by simple integration. From

%_'le=@t+ﬁ\/(t+tl)(t+-b2)+7

and t =eo 6 that is, = - log t follows

iz .
%.'-Zb-=&-%_%=—%%ZE=_G-%—.'%\/(t+tl)(t+t2)

z = -at -7 logt - B \/(t+'bl)(‘b":'b2)%
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t o+ by

t + t2

~as auxiliary variable to an Integral of a rationsl function and
computed direct. Altogether the result is

The last integral is changed by the introduction of

»

z=-a,t—13\/(t+tl)(‘b+t2)—(7+ﬁ tl'b2>logt

- B(tl + te) log ( \/t + 1 + \/t + 'bz) + 2B \[t1t5 log (\/te(t + tl)
e
+ \/tl(t + t2)> + constant

The square roots containing +t are all chosen positive for
posltive t-values, with which they are then unequivocally defined over
the dlssected t-plane In the sense of the analytical continuatlon;

\,tltg 1s positive also. For the logarithmlc functions which, like the

square roots In the dissected t-plame, are unbranched, the principal
values, that is, the values whose lmaginary parts lie between -wl
and ni are visualized as belng Inserted. If the additive constant

is chosen real, the axis of the inlet diffuser coincides wlth the
real axls.

On letting t run alohg the lower rim of the negative
half of the real axls, z describes the upper contour of the desired
diffuser. The intervals (O, -t1) and (-tp, -« give the straight

sldes, the center plece (-t1, -tp), the nose of the diffuser.

Putting z =x + iy,

H
i

ot - 7 log |tl.+ constant,

"tl't

Scaad

B \/(-tl - t)(tp + ) + B(ty + to) arc tan

\/'bz('bl - t)

- 2B\[tyt, arc tan + constant a
t (ty + t) ' -

o
It

LT
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is valld along the cenbter plece, or, iIf +t = -T ('bl S T S tp) and both

additlve constents are taken at zero

X=aT -7 log T

y = B\/(T - %1)(t2 = T) + B(ty + t2) arc tan.-igi:-fi

\’tQ - T
-2B tt, arc ten “tQ(T _ tl) (12)
Vi (ts = 7)

The roots must be extracted positive, and if the argument, as herse,
varies between . O and o, the principal branch from 0 to -g is

chosgen for the arc tan functions,
The formulas (12) define the upper half of the diffuser.

Horizontal stralght lines are drawn toward the right to Infinity from
the two esnd polnts of the nose given by T = 5y rand T = b,

x=or:bl-7logtl,y=0
and

x = aty -7 log tp, ¥ = Bty + B - 2\[fr%p) 2

The complete determination of the dlffuser must include the ingide
wldth 2h; from (11) follows

h=(y+8tt)=x

Of the five constants which define the individual diffuser only
three have any essential significance. If %—Z-C i1s maltiplied by a

constant positive factor and a real constant is added to £, the
diffuser form remains the same. But adding & real constant to £ is
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reflected In t as multiplication by a positive constant.

causing any substantial change, the expression

at + B\(t + t1)(t + o) + 7

NACA T™ 1267

So, without

(13)

can be multiplied by M >0 and +t i1tself be replaced by pt{n > 0).

The expression (13) then becomes

aAlt + BAu \/(t + p,_l'bl)(t + p.-:LbQ) +AY

Since o and 7 are positive, because of (6) and (10), A

and p = ﬁ, and (14) reduces to

t+ 1+ B \/(t + 51 ")(t + o)
with

- _a _a
B'—'E; 'b'l-7tl: t"g—;'bg

or expressed In different notation

-g—zg='b+l+s\/(t+tl)(t+t2)

L

The three quantities B, t;, and to satisfy the conditions

to>1> 1t >0

and

B> 0

(1)

(15)

(16)
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So the formuwlas for compubting the contours read

X=T-1logT
y = E"\/("’ - 'bl)('b2 -T) + B('bl + tp) arc -l:a.n_______m
t2 -T
-es\ftlt2 arc tan V(T - ) (17)
\/tl(te - T)
b= (1 + B\t1%) =

5 - Calculation and Representation of the Velocity
Distribution Along the Contours

The general inlet diffuser flow is obtained by transplenting the
general function &({) = cqf - c26'§ according to (5) and (11) in the

z-plane. The magnitude of the velocity along the contours 1s the
principal point of interest. The complex veloclty in the z-plane is
glven by

_4F _ & . d
W(Z) —-d-;—ag.'a—g- (18)

- -6 dz _
where %E-_cl+c29 = ¢y +cyt and a’--t+‘1+{3\/(t+-bl)(t+t2)
in the simplified method of writing. At the boundary +t 1s negative
(real). Draw & t-axis and plot the amounts of %% and %ZE against 1t
as ordinates. The graph of %%l conslsts of two stralght lines ,'

or more exactly, pleces of straight lines, rising from the

c

point t = -—L of the t-axis at the same angle toward both sides;
c
2
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one straight line withdraws toward the upper left to infinity, the other
terminates at helght c¢; of the ordinate axis. The amount of %% :

can be formularized as follows:

r‘
£+ 1+ B\(t + t1)(t + tp) for t 2 1

dz

at =< V(t +1)2 - B2(t + 1) (% + tp) for -ty 2 £ 2 -t (19)

-t ~ 1 + B\/kt + tl)(t + t2) for t £ -5,
—

All square roots are positive. Accordingly

d.z

at _
a curve that appears bullt up from three arcs. The two outside ones
are hyperbolic arcs, while the inside one can relate to any conical
gection and can even be rectilinear.

is represented by

Individually the following applles: Conformably to ths
condition to, >1 >t >0, t; and t, are chosen fixed, so that

the two end points of the central arc which are at the same +time the
connecting points of the outer arcs are defined. The ordinates
are 1 - tl, and tp - 1. On examination of the entire group of

curves obtained for variable B (fig. 5) 1t 1s seen that the case B = O,
regarded as limiting case, since B must be positive by assumption,
resulte in a palr of stralght lines. As f increases the ordinates
along the entire line Iincrease. The outer hyperbolic arcs deviate in
their connecting points with vertical tangent and become steeper and
gteeper with increasing B. The inside pilece cancels out hyperbollcally,
which ls, the t-axis ls the secondary axls for the first appearing
hyperbolas. The curvature of the arc decreased continuously. If B
reaches the value

.

2\ - t1)(tp - 1)
B tp - b

Bo (20)
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the hyperbolic arc becomes the stralght connectlon of the end points;
at further increasing B the arc becomes concave downward. In

general, B, 1s less than unity. The B values lying between By

and unity give hyperboles for which the t-axis 1s principal axis.

B =1 gives a parabolic arc with the t-axls as axis of symmetry,

eand B >1 results in elliptic arcs wlith progresslvely lncreasing
steepness. The speclal case Ppo = 1 occurs only for %7 + tp = 2.
The end points of the middle arc are then at the sams level and the
convex hyperbolic arcs appearing for small p pass over the straight
line corresponding to B =1 directly in concave elliptic arcs.

The amount lwl of the boundary velocity follows by (18) by
division of the two functiomns of +; the numerator functlon is
represented by the strailght line, the denomlnator functlon ls represented
by the triple product of conlc-sectlon arcs.

6 - Comparison With Ruden's Investigations

Ruden (reference 1) used the hodographic method of mapping throughout
his experiments; the most general space of the w-plane (w = complex
velocity) teken into consideration by him is a circle the center of
which lies on the real axis and which exhiblts two
radial incisions along the axis. The space is shown iIn figure 6.

The slot ends W, &and wy correspond to the flight speed and the
terminal speed inside the diffuser, that 1s, the speeds relating
tc t = and +t = 0. The values Wy and wp Indicate the veloclty

at the end points of the curved part of the diffuser wall. According
to Ruden:

wezww>wi>0>='wl (21)

The analytical relation between w and t 1is readlly Indlcated.

The discussion is restricted to the lower half of the t-plans and of
the w-clrcle, which are clearly and conformally referred to each other.
Excluding, in the first instance, the appearance of equallty signs

in (21) gives the point coordination

tl]o = ~ty -t
W | Wi Wy W1 W2

t1 and to > %7 selgnify any two posltive values.
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+ :
Mapping the lower half plane by t' = : - k| in itself in such

a way that -t; end -t, change to O and w, while the value

t' = 1 corresponds to the value +t =, O the formation of the square

root t" =\t' results in & quadrant (main branch of the square root
for positive +') and a linear mapping wilth real coefflcients, which
are written in the form,

w=8t-D
ct" + 4
finally glves the desired w-space
Accordingly
_a.\/t+tl-b T+ 5o
cVt + t +dVt + b

(22)
The above table of values then appears as

b 0 o b -t
aﬁ'b\[g a -Db
ctl+dvt_2 c+d

The value W = corresponds to & negetive t". From it and from (21)
the following conditions for the coefficients &, b, ¢, & are deduced:

a\/t - b\t
250 by 859 L 25 0

c 74 e ,c\/jcz+d.\/_‘t—£

(23)
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The first three inequalities indicate that all coefficlents have the
same sign; wlthout restrictlon of generality they shall be positlve.
The last inequality signifies then

a>p /2 . (2h)
%

By making the numerator in (22) rational,

. (a2 - p2) t + (a8%t] - b2tp)

(ac +bd) t + (ad + bc)\/(t + t1)(t + to) + (acty + bdty)

Quantity &2.- b2 is positive by reason of (24). Since the
coefficients &, b, ¢, and d may be multiplied by any positive
constant, wlthowt modifying w(t), 82 - b2 = 1 (25) may be assumed.
Therefore

t o+
W = = (26)

At + B\/(t + t1)(t + tp) + C

with -
to = 82%7 - Dot
A =a8ac + bd
(27)
B =ad + be
C = actl + bdtg
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A, B, C, and t, are posltive. On comparing the expression for w in
(26) with

02t + c

il

W o=

at + B\/(t + 5 (6 + t2) +

which can also be written in. the form ' - . _

(28)
at + B\/(t + t1) (b + tp) + 7 -

W=02

where the denominator 1s used again 1n full generality, it 1s seen that
ell the forms consldered by Ruden are Iincluded, The only conditions

which the present coefficients, aslde from that of being positive, must
satisfy are: t, >ty >0 and (10); ty >ty >0 is also satisfled '

for((ei) and from (27) follows immediately the inequality corresponding
to (10 -

Atl <C < At2
Two more facts stand out:

(1) The numerator in (26) is defined when the denominator is
known; this 1s proved by (25) and (27). But the zero place of the
denominator in (28) remains arbitrary for given numerator (<0).
(The factor cp is naturally unessential.) The limitation in (26)
is assoclated with the nature of the hodographic method, which momentarlly
comprises oniy a specific operating condition and does not detract from
the generality as far as the dlffuser forms are concerned.

(2) It is readily seen that for specified values of +t; and to
the formulas (25) and (27) do not permlt the ratios'A : B : C to vary
in the same manner as the ratios o : B : 7. Thus at t;'= 1 and tp =2
the proportional equation A : B : C =1 : 1 : g can cerialinly not -
be -made to agree with (27), whlle belng able to put a=pf =1 and . .

7y = %. To this extent the formule is also more general as regards
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diffuser forms then Ruden's formula (in reference 1) although the
number of constants 1s not greater. Ruden's study of diffusers showing
a constant speed along the nose contour in normal operating condition
requires, according to the present theory, linmearity of the curve

of %%‘ representing the central plece. The normal operating conditions

further require that the zero place of the numerator function of (28)
lie, geometrically speaking, in the straight extemsion of the central
piece. The diffusers characterized in the foregoing by B = By correspond
accordingly to these special inlet diffusers. The degree of generallty
of these investigations surpassing Ruden (reference 1) in two ways, is
especially clear. On the one hand, the numerator functlon in the
expression of w mneed not diseppear exactly at the t-place lying In
the extension of the center plece (more general operating condition), on
the other, this extension need not as in Ruden's report, intersect’ the
t—axi? at all in a point with negatlive abscissa (more general diffuser
forms). :

I1 - THEORY OF OPTIMUM DIFFUSERS

1 - The Characteristic Quantities Wy, We, Wpey and wxd

Earlier in the present report the complex velocity of the general
inlet diffuser flow was defined and the amount of the veloclty along
the diffuser contour analyzed. This amount is herelnafter designated
by w; the complex velocity previously denoted by w doges no longer
appear. With s(t) as the magnitude of the quantity ﬁi% along the

boundary
(‘

t+ 1+ B\/(t + t)(t + 1) for t -ty

s(t) =ﬁ\/(7t +1)2 - Bt + t)(t + tp) for -bp 2t 2 -tp (29)

-t - 1+ B\[(t + t)(t + t3) for t -ty

Tt is borne in mind that t assumes only negative values. So far w
as function of '

Tt T t
‘W’('b) - Lcls-ztc)ge l - c'dl S-Et)CJl (30)
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In the subsequent study only velocity ratios will be the controlling
factors. Without restriction of gemerality co can be put as cp = 1.
To the values +t =0 and t = -» correspond the velocities w1 and w,; .
they are readily obtalned when 1o, t1, to, and B are known. On the
other hand, 1t 1ls qulte diffilcult to set up a general expresslon for _ .
maxlmum increase of speed wpay relating to the gilven parameter values. T
In each specific case wmax 1is also easlly calculated. To establish the .
absclesa value for which w attains its maxlimum, consider a pair of -
straight lines (fig. 8), rediating from point (-to, O) and symmetrical to '
the vertical + = -t,. Assume that this set of stralght lines, starting
from a very flat slope wlth respect to the t-axls, becomes progressively
steeper until 1t meets the curve C representing s(t) for the first
time. The intersection polnt glves the desired absclssa value. Actually,
the palr of stralght lines can be regarded as geometric representation
of the numerator of w 1n the particular limlting position, since no
proportionality factor is involved. In that case w £1 and the equal
sign 1s reached exactly in that particuler point. Naturally, wyay can o
occur at several points. The diffilculty of a general determination :
of wpex &arises from the fact thet different cases have to be distingulshed,
depending upon whether the maximum point lies within the central arc _
of C or at a point of discontinulty. The general examination is -
restricted to the determination in place of Wpgy +to the higher of the
two veloclties which correspond to the two polnts of discontinuilty,
indicated as wx and noting that in many cases Wy = W, . For the
equation Wy = Wpoo certalnly applles when € has a stralght or even
slightly convex central plece, and Indeed, it 1s then fulfilled for
all values of  to. It also applies for slightly concave central piece
in certain conditions. The subssquently discussed optimum diffuser
forms show this characterilstilc practically generally, which physically
implies that the maximum increase of speed occurs at one of the two _
end points of the diffuser nose. At any rate the difference of wpgay
and wy In the diffuser types treated in sectlon IV is significant.
The value of t = =%t; or t = -tp corresponding to the higher speed 1s
readlly apparent. At fixed s(t) and variable ty a reversal takes
place when 1o passes through unity, or when the apex of the two straight
lines falls in the straight extension of the line commeciing the points
of discontinuilty of s(t). With -t3 signifying the abscissa of -the

polnt of intersectlon of this extension with the t-axis
£ = 2yt - 1 - b
3 'bl+t2"2

(31)
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After examination of the

result is as follows:

(a) 'b3 50

(CL) to

(B)

(b) 0 g %5

() to

(B) 'b3 S

(7) t,

(e) t3> 1

(o) b

A A
S

IA
S
A
(e

<1

(B) 1< 66 < %y

(7) %o

24

Wi:

Wy

Wi

¢ Wy o

Wi:

Wx

21
different positions successively the
_ o L1 -ty
. "1+ B b -1
- %o A . .
1+8° 1-1%p
1+ B tlt2
(32)
P Wy = %o P S Ml
1+ B\[5 %, 1+B 1 -1
.- M M- Tl
1+ By [or%, 1+8 -1
g = 0 L1 5% "%
18\, LPP LI-n
Wy = o L1, -1t
’ ~ 1+B 1, -1
1+ B\[ty € 2
Wy = to R R 0 =%
Tl+B 7 1-%
1+B tlt2
t t t (32)
W, = [e] . 1 . 2 2
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The case t3 = 1 does not occur; t3 =, that 1s %) + tp = 2
can be incorporated under (a) or (c¢) («, B).
The ratio of the speeds w4y, W,, and wy permlts én'appraisal

of the mode of operation of the inlet diffuser. In additlon the
wall thickness 4, measured, say in ratio of 1/2 inside width, is

important. By (11)
tq + %
(g _2;5__2 - \/tltg)

d .
=3 = (33)
1+ ﬁ 'tl'bz -

The question posed in the introduction concerning the best possible
design of diffuser contour can now be formulated as follows:

The perameters %, tp, and B shall be so defined that
(1) The quantity & becomes as small as possible

(2) At variation of wy : W, within a specific range, that
1s, at variation of to wlthin & corresponding intervael, the quantilty
Wmax (or w,) 1s the smallest possible with respect to the higher of
the two velocities W, and wy.

2 = The Question of Most Favorable Cholice of Parameter

A mathematically precise trestment of the optimum problem presents
great difflcultlies even with wpey Instead of wx. There are two
reagons for these complications. First, it is, of course, easy, for a
fixed ratio w, : w,, to make the problem a precise minimum problem.
Either assume %ixed 5 and defi%e t1, tp, B, and t, 1In such a way

that (33) is complled with and — becomes a minimum, or else Specify
: W
W ®
*
w_ and attempt to pgduce 8 to a minimum. But at variable wy : w,

® *
on the other hand, —_ is naturally varlable also, and a preclse
<]

formulatlon of the minimum problem 18 not posslble without option.
Second, the complicated form of the function s(t) pleced together
from several analytlcal functlons ls disturbingly noticeable in the
calculations and the attempt to restore the organic character of a
uniform functlon Introduces new difficulties. For thils reason it was
decided to set up rules based upon the geometrical view according to
which the perameter values are chosen to sult the purpose. Everything
else 1s left to the special numerical calculation.

vk
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(a) The case of constant veloclty ratio wi * W, 1s analyzed first.

The numerator function of the expression for w, represented geometrically
by & pair of straight lines (g ', &'), is visualized as fixed. If

a certain increase of velocity 1s admitted, the curve C representing
the denominator function s(t) must be eituated in a part of the (%, s)
plane which is downwardly bounded by & certaln palr of stralght lines
(81, g2). This pair has the sems vertex point as (g;', g') and has,

like (g1', & '), & vertical line of symmetry. Even (gl, g,) can be

regarded as geomestrical pattern of the numerator function, since constant
factors are not involved. The best diffuser is obtained when the

infinite angular space avallable for C is utilized to the best advantage,
that is, the curve is as close ag possible to the boundary. There are

two possibilities. The first consists in choosing the central plece

of C straight and plecing 1t immedlately on g or &. This wey

a two-parametric continuum 1s separated from the three-parametric diffuser
continuum defined by t1, tp, and B; B, is obtalned (20) through +;

and t,. This two-parametric continuum decomposes in two partial
groups; one, characterized by &y as carrier of the straight part of C,
is the group analyzed by Ruden particularly. The two parameters tl
and to permit, as will be seen, the realization of any veloclty ratio
Wyt W § Wpgx. For Ruden's group, Wy < Wy

The second possibility consists in placing & point of discontulty
of C on both g; and g, and choosing B very small so that the central
plece of C clings very closely to g; and gp. The limiting case B =0
leads direct to the palr of straight Iines itself; the corresponding
diffuser consists of two infinitely thin straight walls and represents
the optimum solublon for wi = W.

(b) Suppose the ratio gi is variable. The case of unlimited

o :

variation serves as basis, but wi and w, themselves are visuallzed

as varylng only between zero and a finite limit. In this event the
fixed numerator function previously represented by (gl, g2) 1s replaced

by a two-parametric continuum of numerator functions. What part
of the plane do the corresponding pairs of strailght lines cover?

The intersection points with the ordinate axis cover a finite
interval starting from the. zero point, while the vertex points cover
the entire negative half of the t-axls. To vertex points of very
groat distance correspond very flat pairs of straight lines, that is,
very small values of w,. The measure of rise varles altogether between

zero and a finite value as exemplified in figure 9. The space fllled

by the pairs of straight lines is itself bounded by & palr of stralght
lines which again 1s denoted by (g1, &2).
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3 = Theory of Best Dlffusers for Fixed Wy ! W

The diffusers for which the curve C exhibits a straight central
plece are characterized by the condition

2\/(1 - ) (6, - 1)
tr - % )

B=8 - (34)

The line comnecting the polnts of discontinulty meets the ebsclssa axis
in point -t3, where t3 shall now be posltive. Putting to = t3

(31)) gives the normal operating condition of the diffuser, for the
point (-t3, 0) corresponds to the vertex point of (g;, g). Since

Vmax = W, by (32)

Qtth - 'b; - 'bg . l . te -
l+B"bl+'b2

Ty
W _afor-b3<l

1 Voo Wy :
(ty + to - 2)(1 + B tlte)
- (35)
tl i t2 C 2t : T L : ﬁQt_ ﬁlt for t3 >
(2 - 57 - t2)(1 + B[ t1%,) ML

RERLATL

for B the value (34) is inserted.

Equations (34) and (35) are now used to compute ty, tp, and B

for prescribed ratios Wy W ! Wpaye Fron

} h(tl +t, - 1 -_tlte)

('bg - 'bl)2

BE

follows

_ 52
1 - BE = (tl + t2 2) = (l + 5)2 vﬁoe
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hence
WN2=1-B2 _1-8
Wﬁ&xe (1 + 3)2 1+ 8

¥ 2 2
W - W
B___.;m_i__‘”_. (36)

Wma.xe + Wco2

The applicatlon of thls value gives

(tg + ¥y - 2)2 _ hwﬁax? w&?
2 2 2,2
(to ~ 1) (Vpax + Voo )
or
tl + t2 -2 Wy Voo
% -t ¥ " 5. 2 (37)
tE 1 Vpax~- + Yo

Let t3 be less than 1, that is, %t + %p - 2 be greater then O. In
this case (37) carries the plus sign; and (37) is written in the form

(o = 1) - (1 - %) Wnax Weo

(b2 - 1) + (L - t1)  Vaax® *+ Ve?

hence
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According to thils relation put

1=t = Mugex - woo)2,' t, - 1= MWyax + wm,)2

or

t = 1 = Mugex - W2} By = 1+ Mgy + wm)2

Quantlty w4 must.be used for determining .

_2hytp - by - by L (gey® - welP)2

t3 = . 1 -
't,l + tg -2 2 wm VWeo
and after a simple calculation
Wy PWyex Weo - k(wme - ww2)2

—_ ——

Voo .
anc2 + WS+ (Wmax2 - W 2) |:1 + MWpay + wm)e][l - Mvpay - ww){l

This equation contains only A ag unknown. The removal of denominator
and square root leaves an ordinary quadratic equation for M. TIts two
roots are -

A = QWM(Wma.xz = WiWeo) (Woeo = Wy)
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and

The second solubtlon proves useless or at least dispensable. It
leads to ty = 0, & result that applies only to wy = 0. But
for wy =0, A; glves a valus that exactly agrees with ip.
Therefore put A =»xr;, so that -

6 - Wma.xe + oo (Wmax + w1)2

1 (38)

Wma,xz + w12 (Wpax + w;,o)2

and

Wmax2 + Wcoe (Wm = W1)2

tA =
2
Wma.x2 + W12 (_Wma.x - Vco)2

For the present the calculation gives t; and %, in the form

ewmax(wma.x2 = wiwoo)(wco - wi)

2 2 2
(Vpax  * Wi ) (Vmax + Wo)

t1 =1 -

(39)
zwma.x(wmax2 " Wiwoo)(woo - Wi)

t2=l+

These expressions indicate that 1ty > 1 > t; only when wi < w_;

therefore (38) applies only to this case. This limitation 1s linked
with the previously made limlting assumption t3 < 1. As 1s immediately
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apparent from (39), t; + tp - 2 is actually >0, that 1s, t3 <1
for Wi < W,. For t; + 1t - 2<0 the minus sign is carried in (37).
Then

tg -1 _ (WM - 'W'oo)2
T o,

and a similar equatlion as above glves

2
. Wma.x2 + Wy (Wpay - wi)2
* Wma.x2 + Wi2 (Vpax - woo)2
(ko)
Vigaxo + Weoo (Wppy + Wi)2
tp = o

Wco>2

Ei!
+
=
no
éi?
+

Thus compared to (38) only the expressions for t; and to are exchanged.
It 1s easlly checked that tTo > 1 > %1 1s exactly fulflliled for
wy > v, and that for wy >w, actually %, + % - 2 <0, as 1t must be.

With it the problem of defining B, t;, and t, for preécribed.
ratios Wy ! W, ! Wmax 1s completely solved. For wy <w, equations

(36) and (38), for wy >w_, (36) and (L4O) must be applied. The case
of Wy =W, 18 technically of no interest and mathematically trivial,

In conclusion, the quantlty 8 1s computed.

L4

a1 1
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ou. 2
1+B 'blte = —émx_z
Vmax * Wi
2 2 L 2( 2 2 _ 2
5+ b ) Voo T Yo Vpax T Vpey (Wg + Wy 4wiw¥) + wiewm-
2 2 2 2 2,2
Vmex T Vi (Wm&x - Vo )
8 by + o _ Wma.xh- + wma(wwe + wie - hwgwe) + viewwe
2 2 2 2 2
Gy + Wy ) (Vgay = W)
whence after an easy calculation
(W = W1)2
5= ——1 (1)

This important formula of Ruden's theory is obtailnable without difficulty;

1t 1s valid for wy S w,.

Another interesting and practically important result is the
following: the quantitles denoted by wy, W,, and Wpay correspond

o0t
to the normal operating conditlon and are now written with capital
letters. When any desired operating conditions for a fixed diffuser
are to be studied, the equation system (32) is used with general +o-
instead of (35); w, can then also be replaced by Wygy. By

limitation to wy < W,, and taking (36) and (38) into account where
capltal letters are used at the right-hand side,

'_b

O

H

o
o

1]

ct
w

max * Wi° Wgay *We© |t - %

=) W

Wy i Weo tWppye = to

I_I

H
o)
]
of
o
[\
|_l
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whence

2, w2 —
b o 7L Vmex * We©
o =

Voo Wgax® + W42

W i . z

When the ratio -t gradually increases from O, ty Increases =

W, i

correspondingly. The ratio DX  Jecreases continuously so -
=]

long as t, remains less than unity; then 1t rises agaiﬁ for 'bo' > 1.
Thue the smellest lncrease of speed occurs at g = 1, that 1s, for

2 2 _

In figure 15 the velocltises at the end polints of the nose of a specific T
Wy Wnax
Ruden Inlet diffuser s 0.k4; W = 1:2] are represented divided
o0 o
Wi

by the flight speed, as function of bl the higher of the two speeds
[}

is Wpygy. The diffuser shows & distinc-lﬁly demarceted range of favorable
efficiency. This range is glven by

[

’ 2 2
Wy _ Wy _ Wpgy™ + Wy ' . -
W, = 2 2 o .
® Wmax + Weo -

A
£l

- .
If ® and T]:'ax are given, %j-' can be computed by (41)., Figure 1k

© ] - =
in Ruden's report (reference 1) represents this relation graphically

W W,
by the curves ﬁ_j:. = constant in a 3&3‘, 8> plane. This figurs

% * W2 + Wy
is now complemented by the addition of the curves X 1 - congtant;

W
<E) = constant replaces ﬁ-j: = congtant, (ﬁ) = constant -
n o

[~ ] wco
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Wma.x2 + Wj.2
replaces ————————— = constant In order to indicate that the
Wppsl + Wel

upper and lower limit of the favorable efficlency range are lncluded.
Figure 10 makes .1t possible to define the limits of the favoreable

efficlency range for prescribed values of © and Yrex
(2]
The second diffuser type for fixed wq : W, 1s mathematically

very simple. The vertex of the palr of straight lines 1s placed
toward (-1,0), while the straight lines themselves rise at 45°; t, 1is

put equal to unity; wy coincides with wysx. By (32)

Wy ¢ W ! W = . s 1
i max ; : :
" 1+ B\[tyt, TP
hence
W - W
B = Lﬂ;___ﬂ (L2)
[+]
Vmax = Vi W
\’tltz = s (43)
max ® 1
-For ©&

ty 4+ '
To keep © at a minimum, quantity —1-—-2—1:2- must be reduced to
& minimum. The geometric mean of t; and tp, \/t1to 1s defined
by (43); the srithmetic mean % (t1 + tp) Decomes a minimum when
ty and 1ty are made to come together as closely as possible. As

to >1 >t 1Is to be valld, the optimum is only approximately
attainable. For wy <w, \/tlte > 1, and the optimum is represented by
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1 b = 4 (Wipy = ¥1)2 W
R A RN Ly

For wy> w, these values must be exchanged for t; and to. In any
case ' :

2
tl+t2=W@
2

(w2 + wi2) - PWpa WiV (Wy + W) + 2wy2 w2

2 2
2wy~ (Vpay - W)

and
Vg (Voo = wi)z
~ 2wy v (Vmax - w,)

(k)

This value is now Indlcated by 8, and then compared with the values
given by (41):

5 =8 wm(w%+ Vw)
[+ 2]

R _ :
The quotient -é-"ﬁ ls 1n any case greater than unity. The second

diffuser type 1s, therefore, inferior to the first. For very small

and very great wq : W, Ox must become substantially greater than 5.

Becauge for Wy < Wi

Vo (Vmax + Weo)  WoPWoo Voo

— > By wa = Wy (45)

and for wy > Wy

Ve (Wpay + Weo) _ Wy(wy + Wo) 1(¥y '
2Wi "W'-':,o > 2Wi W - 2 * 1 ()+6)
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go that Zi constitutes a measure for the minimum increase which 8*

Yoo

experiences with respect to ©. In (45) and (46), wpey was replaced
by the greater of the speeds wy and We. Consequently, the estimates

are much better as the speed increases are smaller. But small
speed increases correspond to small parameter values B.

i .- Theory of Optimum Diffusers for Any Variable Ratlo wy : W

=]

In this instance three types of diffusers are involved. For the
first two, C has a straight central plece that lles on g, or g;;

for the third type the central plece of C 1is curved and touches gj
and g,. The straight line g, rYums parallel to the t-axis, while go

passes through the origin of the coordinates.

The first type was theoretically discussed; 1t belongs to the Ruden
group. Now, however, the reference point 1, must be chosen general,

and at the seme time the relation +t3 = 0, that 1s

2t b, =ty = b, =0 (47)

must be observed. By (34)

2 _ bty + tp = 1 - bt5)

(tp - t1)2 ’
the insertion of
according to (47) gives
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or differently expressed

Accordingly © 1s computed as follows:

_ B (5] + % 1 -
5 = < S - \/tlt2> = E(‘ [t1tp - 1>

1+ B\/t1to

Since Wpay = w* the veloclity ratio follows as

th - ¢
—2-——2fort 51
th = 1 .o
1 P Wpax T =
- 2 1+ L ;t.g__-_-b}.fort >1
Tt 1T - % o =

Belng chiefly interested in the case of very high values of w4 ¢

to is acoordingly put as t5—>w, so that

2
Vmax ¢ Wi = 1 -t

It 1s then readily apparent that +; must be greater then .
Therefore 2

W.
?;x> 21=)-l-
1-3

However, since speed increases of this order of magnitude are

Wco 2

inadmissable in practice, the first type is unsultable for the present

purpose.

bt
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For the second type, B =1 andi % + tp = 2. Agaln wppy =W
hence

*2

~

t2 _ to
<
r—— for tog¢ 1l
ke 2, -t
W. *W W = — . -
1 "o * "max 2 *Y o 1 >
1 4\ /tlte 1-%, for t, =1
—

with tl =1l-8a, 5o =1 +a. By proper selection of &a the last
ratio can be made to approach unity as closely as desired, so that
in thils respect the conditions are much more propltious than in the
former case. On the other hand, the conditions for medium speed
ratios are still too unfavorable. For from

- i ANt i1 N1 -aP ¥
S 2 W, 2 Wy
W
when assuming —- < 1 and hence +t, < 1, follows
o]
th - % l+a-t
2 o) - Yo
Vipay = 22— Qw =2 —— Oy
max t - 1 o] a, @

I
=z
+
I
£
1
|_l
+
'—J
1
o
o
2
|—l¢
\%
&

e result useless in practice.

The third type 1s characterized by the fact that C touches
g and gg. The points of contact have the abscissas -tl and -to.

The equation of the central arc of C is by (29):
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2 = (6 +1)2 - B2(t + t1)(t + tp)
which, after differentiation and putting +t = -t;, glves

28 %% =2(1 - %) - BBty - 1)
t=~t7

By assumption this expression must dilsappear, whence
(48)

This value, introduced in the expression of g2 and differentiated
for t = -t,, gives -

1-
og 48 = 2(1 - bp) +2

5 -
l (tg - tl) 2(2 - t1 -~ tp)
at to
-t= "t2 .

or, since s(-tp) = tp - 1:

2-tl-t2'

ds
to - 1

dt

==ty
In order that C touch gpo thls value must be equal to

-2
- B,

that 1s,
(2 - %1 - tp) to + (tp - 1)2 =

or

tyty = 1 (49)
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By (48) and (k9)

ﬂ2 _ 2'bl
1+ %
or
tl =—.£_'_
2 - B2

"

Quentity ® 1s expressed by B 1in the following manner:

s B (B2 . 2-2 )\ p1sp-p?
.2(1+Bje_ﬁ2 52 B(Q'BE)

The comnectlion between f and B i1is mumsrically represented in
the table as follows: "

s
HIlO

gl 1.0 9 0.8 0.7 0.6
5| 0 03 0.13 0.29 0.50

Wl

0.
0. .8

@]

To keep B within tolerable limits, B certainly must not fall
below 0.5. Formulas (32) then give (W, = Wmax):

~
2 - B2 - Py
for to 1
Wy W ! Wmax T oo 1 i
1o 1+B 1 +B N\(2-p2) g, - >
5 for to 2 1
2(1 - B%)
e
that 1s
W
by = =t
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and

> (52)

_ 2
anx = gy v - gy e for vy £ v
@

max 2(1 B) Wy - 501 - B) Wy fOr wi = Wy

-
for B = %, for example,

1.75w, - 0.25wi(wy S W)

[l

Eﬂ

1.T5wy = 0.25w (W1 2 W)

The conditions are seen to be much more favorable then in the other

two cages. Nevertheless 1t lsg desirable to reduce the speed Iincreases
st1ll farther without increasing ©. This is accomplished, gecmetrically
speaking, by placing the central arc of C a little lower. Analytically,
thls operatlion slgnifies & decrease of B for fixed values of t,

' g [ttty
and t,. The corresponding wall thickness & = -1
2 1+;3\ 2

decreases with decreasing B, and (51) being valid the velocity wy
follows as

=~
Wy —P_l-t (W, - tywy) for wy S v,

= 2]

> (53)

v, = %?%;%— (wy = tyW,) for wi 2 We
1

R
A decreage of B therefore also acts favorably on w,, For extreme

values of wy ! Wy, Wpgy = Wy 18, of course, no longer valld, and the

range of validity of the last equation diminished with decreasing 8.
The greatest lncrease of speed grows, in any case, when S decreases.
The extent to which S 1s to be reduced 1s a matter that must be
declded in each case individually.

1
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III - EXAMPLE TO II, 3

It concerns Ruden's diffuser II (reference 2) with constant
increase of speed wpay = 1.2 W, along the nose contour in normal

operating conditlon -% = 0.%. By (36) and (38), in this case B = 31-% = 0.18,

-]

tp = %gg = 0.807 and 1, = ;%g'= ol b, so that the upper contour of the
noge ls reprssented by

X = T - log T

vy = o.18\/(; - 0.807) (2.4 - T) + L4.55 arc tan@

vakh -7
- 1.6 arc tan LLVT - 0.807
2\/ak.h - 7

h = 1.8¢ = 5.655 = one-half inside width.

Figures 11 to 1k give a comparisbn of the computed and measured

W P
pressure distributions for four different 21 ratios. The ordinate -8t

W
ig plotted against the abscissa x, (as in reference 2) that 1is,
the ratio of static pressure p - p, to kinetlc energy at infinity,

q = EW«?' By Bernoullil's equation

that is,
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The gquotient ;ﬁ- is defined by the graphical method represented in I, 5.

L=}
The agrecment between theory and test 1s good. The larger discrepanciss
at the diffuser exit are explainable by the effect of the blunt end,
while defects in workmanship are certainly noticeable at the mouth of
the diffuser. The only appreciable point of difference .is that the
marked low-pregsure peaks at the mouth are blunted by friction effects

as postulated by theory for very hlgh and very low ;i. The exact value
-4

of the maximum loT pressure was, of course, not measured, but the

measurements give a fairly good idea of the pressure distribution along

the mouth of the diffuser. Accordlng to theory the maximum low pressure,

that is, the maximum velocity of the flow, lles always at one of the

end points of the nose contour. The velocitlies at these points,

sach divided by the flight speed, are represented in figure 15

for varisble -i; Wpax 18 the greater of ‘the two. The favorable
W

-]

effective range, filling the interval from 0.4 to 0.66, 'is plainly

visible. The dashed line represents the ratio —ZBE for wy > We.
W
1
Continued toward the right 1t reachss the height of 9.3.

IV - EXAMPLE TO IT, &%

.o W
Three different types of dlffusers for unlimitedly variable ;i
[>2]
were discussed, but the first two were rejected because of excessively
high increase of speed even with great wall thickness. The third type
depends only on one parameter PB. The values tl and. tz for given B
are defined by (48) and (49). But, as stated previously after t;

and t, are defined, B can be subsequently made variable again,

S0 as to provide more favorable conditions for the operating range of
w

principal interest by foregolng extreme values of 1, Suppose the

00

start is made from B = 0.5, for which t; = %' and tp = 7. The sum

t] +.t, has the value 7.1k, This value 1is replaced by the mathe-
maticafly convenient value

ty + tp = 8 B (54)
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which 1s equivalent to a slight decreasme of the initial value for B;
this is now 0.47. With

t1 = b - \f15 = 0.127

to = L +\/15 = 7.873

to be computed from (54%) and (49) the equations (17) for computing
the diffuser contours are set up:

x=T-1og T

y=B\’.8=r-12—1+8arcta.nT'o'i@7 - 2 arc tan 1-813(T - 0.127)
Ver - 2 - 1 V8T - ®° -1
h:(l+B)T{

In accord with previous studies, the values chosen for B are below
the initial value 0.47. Figure 16 shows the contours for B = 0.1,

0.2, 0.3, and 0.k, Scele variations ensure that all diffusers have

equal absolute wall thickness 4. The values of the relative

thickness d =% are also indicated.

Figure 17 shows the maximm speed distribution for the four

W :
diffusers plotted against —i, which is, for Wy <V the ratio
w

o«
Ymax W,
TN for wi3> w, the ratio X
(=]

A decresse of B in the

central range 1s favorable, at the ends, unfavorable. The others
refer to the case B = 0.4, Figures 18 to 20 represent the relative
pressure distributions for different operating conditions in comparison
with the pressure-distribution curves of figures 11 to 1k.
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V - APPENDIX

1.~ Variation of the Function 4z of &

Writing x, x3, Xp, and y Instead of +, %1, tp, and

:
ag

so as to conform with the conventlonal notations of analytical geometry,
the equation of the central arc of C .reads '

y2 = (x + 1)2 - p2(x + %) (x + x5)
or
x2(1 - p2) - y2 + x|:2 - BQ(xl + xe% +1 - 82x1x2 =0

If a curve of the second order

-

allx2 + 283p0Xy + a22y2 + 2893X + 2853y + 833 = 0

is %o be analyzsd, the determinants

a1l ajo 213

A=. fap1 - e 823 (a1x = ai1)
a3l 832 833
and
ail alo
A =
33 any 8oo

must be borne in mind. The decomposltion of the curve in a pair
of straight lines is indicated by A = 0, while for A #0
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A33 >0 glves an ellipse
A33 = 0 & parabola

A33-< O & hyperbola. In the present case

xl+x2
1 -6 0 1-32—2-— X] + X2
_ 1_52__._2__
A=1]0 . -1 0 - (1 - B2)(1 - BPxyxp)
= B2(1 + x13p - X - Xp)
X] + X
1 - p° ___E;_ii 0 1 - Bexlx2 . Bh(xe ; xl)2

- xl)(x2 - 1)

(x5 - x)

24/(1

Decomposition therefore occurs for B =0 and B = B,, whers,
(xq + % - 2)2
(o - x1)°
and ettains unity only for xj + xp = 2; A3z has the value B2 - 1,

hence, hyperbolas when B < 1, ellipses when B > 1. The case B =1
results 1n a parabola, or, for xj + X3 =2 1n a pair of parabolas,

of which only the one straight 1ine above the abscissa axis is in
evidence. : .

gince 1 - BOE =

is certainly not greédter than unity

2 - General Determination of Wmax

Elgewhere w had been defined geometrically. ZFor the case
that wpay 1s assumed at an Inside point of the nose contour,
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a tangent 1s placed from a given point of the t-axis oﬁ'the conical
section to which the central arc of C relates. The corresponding
calculation is as follows: The equation of the conical sectlon 1s

(t +1)2 - B2(t + t9)(t + tp) - 82 =0
or
(1 - B82) t2 + [% - Ba(tl + tgi] t +1 - Betltg - 82 =0

while the considered point has the coordinmates t = -t,, s = O.
For computing the tangents from point (xo, yo) on the conical section

allx2 + 2a1oXy + a22y2 + 2aj3x + 2&23y + a33 =0

the "polar" of (x5, yo,) with respect to the conical section

811%xXo + a1p(Xy ) + ¥Xo) + 8pp¥y, * al3(x + Xo) +ap3(y + yo) + 833 =0

are determined.

This straight line dissects the two constant pointé on ths
conical section. In the present case the equation of the polar
is

5 +
l-ﬁethe(

1]
o

-(1 - B?) ttg + t - to) + (1 - B2 tyty)

or

b+t
(1 - g2 —;—5——2>t0-- (1 - B t1tp)

(1_32) tQ_(]_-BQPJ%-_t_E.)

= (55)
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The polar 1s normal to the t-axis. Denoting the value given
by (55) with -t,', gives

Vmax lto N to'l
Voo o 5('to')

(1 +8)

that 1s

A simple ¢alculation gilves:

Ymax 2 4L(1 + B)2 ,[ o o J
= (L - t5)= = B(ty = t5)(to = %)
(‘Q> (to - )2 (8,2 - 6°) © LRl " e =

B, is the value given by (20); B 1s smaller than B,. The formula
holds for the case that the value +t, ranges between t; and t,,

hence for
b+ b
- a2 _L____2> - ( - g2 >
E (l B 5 to 1 B tlt2 < .

t + 1o 2
(1 - ) to-(l-Bz———e——>

Determine next the two &, values for which t,' = t; or

o' = t2. These values are given by

2

E (4, - 00 - &)
2

1-% - %T (t2 - 1)

T3 =1+

and 2
B (4 - t1)(8p - 1) |

1 - 2 : (Figure 21)
tp -1 -5 (t2 - t1)

by
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For

t; ranges between 1 and o, for

2(ty - 1)

B < to(tp - t1)

ty lies between O and 1. If B satisfles these two inequaliltles,
formula (56) holds for all ty that meet the condlitlons O‘g_to <ty
or tg 2 t3, while wppy = w, for t) £ % £ t3. If only one of
the inequalities for B 1s satisfied, there is only one valldity

interval for (56), and if none of the inequalities applies, Wmay = W,.
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PART IT

I - AUXILIARY MATHEMATICAT. EXAMINATTION

Consider the conformal mapping effected by w =12z + i
Z
in such a way that z and w are made to vary in the same planse,
2z 'being restricted to values which, geometrically speaking, lie
outside of the unit circle and above the real axis., The case then
presents a conformal mapping of a semicircularly notched half plans

on the entire half plane,
It is seen at once that

() each inside point 1s shifted nearer to the real axis
by the mapping

(b) the boundary points lying on the real axis all travel
outward, that i1s, for z > 1 toward the right, for z< -1
toward the left, .

(c) every boundaery interval lying on the real axis is reduced
in 1ts length..

These three facts hold, as will be shown, not only for the special
mapping according to z + l, but very generally for the conformal
Z

mapping on & half plane provided with any desired notch on the full
half plane. More exactly the followlng is valid: (fig. 22)

Let B represent a slmple connected space Iin the upper half of the
z-plans bounded by the two semistraight lines =z § a -and =z 2 b
(2 and b real, a < b) and a curved arc free of double points
comnecting the points a and b and with exception of the end
polnts rumning entirely within the upper half plane; B 1s mapped
by the function w = £(z) on the whole upper half plane and the
mapping function existing according to Rismann's mapping principle is
so standardized that the Infinitely remote point transforms in the
finltely remote point and that in the development

c C
v =Cz+ ¢y + L +2 4, .. (C > 0) applicable to the vicinity of

z Z2

infinite distance, the coefficients C and c, attain the values .l
and O (standardization at rest in infinity, w = z + ((0)).
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In this instance
(a) J(w) < J(z) for all inside points
(b) w>2z for z>b, w<z for z <a

(e) l Wo = w1|<,z2 - Zl' for z,>z; b and for zy <zpsa
(w1 = £(z4))

Proof:

For the first 1t 1s noted that the function w(z) can be
analytically continued by the reflection principle beyond the
real axls. Putting z = x + 1y,

W=z =w'-1u'"+1iv'

and considering v' as function of x and ¥, v' 1s a regular
potential function in the entire space B, which on approaching the
infinitely remote point disappears. Along the boundary piece on

the real axis v' = 0, along the rest of the boundary

v' < 0. Because of the reguler behavior at infinity the validity

of v'<O0 on the inside can be deduced from +the inequality v' <0
at the boundary. Since v' =J(w) - J(z) the claim (a) is therefore
proved.

Let (xo, O) represent a boundary point of B on the real axis,
As v'(Xp, 0) =0 and v'(xs, y) <O for sufficilently
small positive y values %;l (xo, 0) 1is certainly < O,

1 4
The equal sign must be excluded, for if %%— (%o, O) were equal
to 0, then 2. as well as L' would vanish in point (xg, 0), that
ox e’ Sy ‘

1s, the derivative 3z vwould be O at the particular place and the.

development of w' would assume the form
t K
whi=ag +ag (z -x )"+

with )

k22, ag + 0 (o, real)
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But then to a small two-dimensional surrounding of X, there would

correspond a multi-lobed surrounding of point o, through the

mepping according to w'(z), and v' would have to assume positive
values in the upper half plane, which cannot be, according to (a).

By the Cauchy-Riemann differential equations %El is < 0 for all
X

boundary .points of B 1lying on the real axis, that 1s, u'

decreases when traveling from left to right. As to the '
disappearance of u' at infinity 1t is seen that u' must be positive
for z 2 b, whereas u' assumes negative values for z < a. But

along the real axis u' = w - 2z, whence the claim (b).

Lastly, #or Zzp > 2z 2 b and for z; < Zy < &
(v - wi) - (zp - z1) = (wp - ZE) - (wq - zl) =u's - u'y
This monotonic behavior of u' proves the corrsctness of c.
IT - MATHEMATICAL TREATMENT OF GENERAL INLET DIFFUSERS

The following investigation contains four complex variables

all of which are in analytical relationship to each other. The first
veriable, z, is the complex coordinate in the plane of the diffuser,
the second, W, 1s given by the value of the stream function, ths
third, w, by the value of the complex veloclty, and the fourth, t,

is a pure mathematicdlly explained auxiliary quantity. The range of
variation of z 1s represented in figure 23(a). Ths diffuser is
assumed to be of infinite length; 1t is to be symmetrical and bounded
by two convex curves with constant dirsction of tangents, whose pieces
extending to infinity ars rectilinear from a certain point on. The
convexity required for the outside is natural; bat at the inside wall
the limitation to convex forms imposes a reolinguishmént not shown
beforchand by physical-technicel considerations. On the .contrary,
the constructed engine cowlings used in practice for w3y <w, rather

exhibit cross-sectional enlargement downstream from the diffuser opening,
that is, no convex contours (fig. 23(b)). Nevertheless the limitation
is restricted to convex forms for the reason that the mathematical

enalysis afforis a simple comnection between quantity © = % (figs. 23(a)

and 23(b)) -and the velocity distribution along the contour; but the
quantity © 1s declsive only for convex forms in problems of engin=
installation, while on forms with cross-sectional enlargement the

quantity ©Ox = %i is decisive, the dependence of which on the velocity
*

distribution is far more complicated.
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. W
Only one flow which corresponds to a specific ratio -1 is
investigated. It ia represented by an enalytical function W = F(z). .
Putting W = U + 1V, the streamlines are given by V = constant;

w = Q%ﬁ&l is the complex veloclty whose conJugate complex value

represents the actual veloclty in magnitude and dilrection. The :
function F(z) can be replaced by oW + c¢' with positive c¢ and .
any coamplex c¢’' without altering the flow pattern, because only ;
& multiplicatlion of the complex velocity by a constant positive

factor is effected, which 1s equivalent to a varilation in mass unit.

By W =1F(z) the z space is mapped on a symmetrical slot region
which is, the slots run paraliel to the real axis
rightward to infinity. By taking advantage of the previously cited
freedom in the determination of W, it can be assumed that the two
slots are given by V = zx, U 20 (fig. 24).

The quantity w = Qgi&l varies in & symmetrical space lylng
z

entirely within finite limits. Putting w = peiT, the actual velocity is
indicated by pe~lT. The boundary values of T are given directly by
the diffuser contours, -7 = arg dz, where, 1t 1s true, the orientation
of the line element still remalns questionable, that is, T is defined
up to multiples of =n. In any case it follows from the assumed convexity
of the contours that T varles monotonically, if the contour is
followed from the stagnation point to Infinity in one or the other
dirsction. The further study i1s restricted to the upper half of

the 2z space. The image of this half space in the w-plane is bounded
by a length lylng on. the real axls, which corresponds to the

line of symmetry of the diffuser and the two straight walls,

and by a curve arising from the curved part of the diffuser contour.

The curve proceeds entirely in the upper w-plane when the stagnation
point lies on the outside diffuser wall; it runs in the lower half plane,
when the stegnation polnt lies on the inside wall; it splits into two
arcs, each belonging to a half plane, when the stagnation polnt is -
a point of the curved contour. In the latter case the two branches ;
of the curves meet in the zero point of the w-plane and have a common
tangent for w = 0. In any event the curved part of the boundary of
the w-space is free from double points because of the monotonic
variation of T; from this it can be concluded without difficulty

that the w-space must be & smooth, that 1s, single lobed, space., The
figure 25 represents potential space forms. The zero point 1s always a
boundary point. The w; and W, Indicate the velocity inside the
diffuser and the flight speed.
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When the w-spabs with the points wi1 and w, 1s given, the

diffuser design is defined. For the w-space is mapped on the W-space
of which only.the upper half is taken into account; w = O changes
to W = n1, while to wi and w_ correspond the two infinitely

distant boundary points of the w-space. The invarlaebly existing
mapping function W(w) enmables 2z +to be computed as function of w.

Since

aw
dz

N
Il

dW 1 &W
W &w

According to it =z appears to be determinsd up to an additive constent.
The other possible simllarity mapplngs in the z-plane follow when 1t

is remembered that the quantity W 1s .arbitrarily normalized by the
foregoing, and that truly directional similarity mapping with O as
central polnt in the w-plane is admissible.

Since pressure and veloclty distribution are the chief factors
governing the quality of the diffuser, the usual process 1s to
proceed. from the veloclty patterns and to determine the contour
according to 1t.

In the present report the hodographic method is resorted to.
But, while in reference (1) the amount of the w-spage was automatically
restricted by the assumption that the curved part of the contour is
a half circle, no specital assumptlion is made here.

It 1s convenient to replace the W-space by a half plane, putting
W=t-logt+xni-1. It is readily verified that by this relation
between t and W +the W-space is, by appropriate fixing of the logarithm,
mapped on the upper half of the t-plane. The two infinitely distant
polnts of the W-space correspond to the points t =0 and t = o
while W = ni changes to t =1 (fig. 26).
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The w-space must accordingly be mapped on the upper half plane
by means of a functlon t(w), the points O, wi, W, must change
into 1, O, =, (fundemental mapping of w-space with boundary normalizing).
The corresponding diffuser form 1s then deflned by

z = LA gy = Lip -2} &b,y
w aw w /) dw
IIT - A GENERAL THICKNESS FORMULA

The maln object of the present note 1s to prove the fact that
for fixed values of Wi Vi and Wpg. the corresponding wall thickmess
of the diffuser cannot become less than the value camputed by Ruden
for the case of constant increase of velocilty along the nose

(Voo = Wy)Z

2 2

W - Ve

max

only Ruden's diffusers reach the minimum value.

To be able to. compute the quantity & for any desired w-space
only the behavior of the function_z(w) near W, needs to be known.

The quantity t becomes infinite for W, 1n first order and has a
development of the form

-

f .
t-w_ww+reg.

with f positive for w3y < w, and negative for Wy > Weor It 1s

to bo noted that +(w) over an interval of the real axis
contalning the point w_, on the inside certainly can be continued by
the reflection principle,
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Accordingly
t = —E— (1 + ((0)))
W = W
1 _w - Woo
= = —— (1 + ((0)))
dt hig
= = - ———— + reg.
dw (W _ww)z
1\ dt £ 1
1 -T)l3==- +
( t> aw (w - ww)z V- Wy

+ reg.

23

where reg. indicates a function reguler for w,, ((0)) one regular for

v, énd disappearing in w, 1tself. Adding the development of

1_1 1
=== = (v -w_) +
v W w2( "")
[++] =]
gives then
1 1 f 1
z=f w—--—e(w-wm)+... - > T -
o Weo (W-Wm) «

A P S log (w - w,) + reg.
Ve © W Voo

From this formule the amount of 4 + h, that 1s, the variation of the

+ reg | dw

imaginary component of 2z on passing through w,_, can be taken at once

d+h=mx —2-2-+_l_
woo wco
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Quantity h is correspondingly given by the variation of the j.magin&ry
component of 2z on passing through wy. In this instance

t o= c(w - wy) + . ..'07@0
1 1
_b..cw_wi+reg.
iydat _ 1

(l_t>dw— W_Wi+reg.

Lol s (o)
w W

z = i+-((o)) -_l:_l+reg. d.w=-llog (W-Wi) + reg.
Wy W o~ Wi Wy

that 1s, n = -E-; hence
W

and

6=_J-_2.(wif+wiw°°-w2)

[o2]

00

While in the formulas for h and 4 + h the arbitrary stendardization
of W plays a part, the formula for & 1s of completely general
validity. The guantity f, that is, the residuum of +t in point W,
has the dimension of a velocity. At fixed values of vy and W

& 1s solely dependent on f.

-4

The thickness formule 1s now used to compute the wall thickness
of a Ruden type of inlet diffuser. The w-space is a half circle; the
conter is the zero point, the radius is Wpayx and for wy <w, the

half ¢ircle lies in the lower, for w4 > W 1n the upper half plane.

The mapping fuaction t(w) 1s a rational function of the second degree,

Wyax?2
hE}

with zero points at wy and

, whlle assuming the value o for w,,
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Wmaxe
and
woo
Accordingly
Wﬁaxz
(w - wy\v -
t = constant 1 W12
W _
(w - wu)(w - =X )
[ wco

and the constant factor gives the value 1, since £(0) = 1. The
residuum for w_ 1s

2
Vmax
. (v - wi)(wcn - T) ( ) (Vmaxe - wmwi) LI
= = \W - W
1
Wmax© ® (Vmax® - W“?) Wi
wco = Ww
hence
2 2
- W = W
5 =L |(w -y Tmex Ve | (e m )T
W s 2 -W2 @ 2 -W2
Lo wma.:x: [ Wmax o

IV - PROOF OF THE MINIMUM FORMULA

A pilece is cut out of the w-space B of figure 25(a) (w3 < W,

stagnation point at lhside wall), as indicated in figure 27(a). What
is the variation experienced by ©6% According to the cited thickness
formula it is sufficient to analyze the variation of f£. It is £ >O0.

The reduced space is denoted by B'. The function +t(w) that
maps the original space on the half plane is regarded as known. The
mepping function +t'(w) for B' is then obtalned in the following
manner: first map B' by means of t(w); the result 1s a half plane
with & notch. This 1s then mapped by means of a function 1"(t) omn
& complete half plane, the mapping to be standardized et infinity
according to the formula t" =+t + ((0)); t' is then a whole linear

formation of t", ' = At" + p. Hence, since t' as function of %
c c
at Infinlty has a development +' =At + u + ?% + ;% «+., the relation

f' = A holds for the residues f and £, Quantity A 1is defined by



56 | | _ NACA T™ 1267

the condition that points O and wy shall chenge to t' =1 and

t' =0. Hemce +%(0) =1 and +t(wy) = O. At transition from + +o t".
the Interval (O,l) is reduced in any event, since the notch lies outside
the interval. Accordingly A must definitely be greater than unity,
hence : '

£'>rf
*

The wall thickness therefore increases as the w-space is reduced.

When the w-space Increases, ® decreases accordingly. So, 1f a specific
Vmax 18 given, which may be attalned but not exceeded, the w-space

may not extend beyond the circular space |w| S wpyy. The wall

thickness is & minimum when the space avallable is completely utilized,
that 1s, when the amount of the velocity along the entire nose is made
equal to Wrax+ Lbis proves the minimum theorem for Wy < W, When
assuming the stagnation point located at the inside wall.

Next, the stagnation point is placed on the curved portion of
the contour, while Wy <w, (fig. 27(b)). In this instence any increase

of the w-space in the lower half plane is again associated with a
decrease In 8. This decrease in & can be continued further by
reducling the part of the w-space situated in the upper half plane,
This 1s readily verified by the mapping +'(w) of the reduced gpace
a8 above, passing through t(w) to & half plane with a notch, then
completing the transition to t" =t + ((0)) and to t' = At + p.

The difference now consists in the notch in the t-plane lying
between O and 1, thus increasing the interval (O, 1) to t" on
transition. Therefore A <1 and f' < f, that is & becomes smaller
as claimed. The entire piece of the w-space lying in the upper half
plane 1s omitted, wherewith the stagnation point shifts to the inside wall.

The optimum within the group of convex diffusers for specific wpay
is therefore actually reached by Ruden's inlet diffuser.

If Wy > Wy the proof 1s entirely analogous. The residuum f

1s then negative. A notch In the w-space of the upper half plane appears
then in the t-plene between O and 1 and results in A <1.
Accordingly f' =Af >f, and © increases. It is seen further

that a plece of the w-space lying in the lower haelf plane must be
reduced, in order that & decrease. The optimum w-space for a given

Wiy 18 therefore the half circle |w| S Vmax, J(w) 2 0.
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V. CONCLUDING REMARKS

The subsequent discussilon is limited to the case w; < W,.

Asg already stated, the diffusers used in practice exhibit crosas-
sectional enlargements downstream from the diffuser orifice (fig. 23(b)).
The corresponding hodograph record is given 1ln figure 28, it being
agsumed that the stagnation polnt lies on the 1pnside wall. The

quantity 8 = % can be reduced below Ruden's value, if the hodographic

picture 1s so chosen that, aslde from the straight plece, the lower
half of the circle |w| =w, , and between O and Wy an arc

running in the lower half plane takes part on the demarcation.

The nearer the last arc ls pulled to the remaining part of the
rim, the smaller & ~becomes. The value & = 0 1ig attainable. However,
two facts should be borne in mind.

First, the quantity governming the practicabllity of the diffuser

2 )
1 ®% = %, not & = %, so this quantity would have to be analyzed in

relation to the w-space. The resulting relation might not be as simple
ags for ©. In any case it is doubtful whether ©* varies in general,
as O, and to what value © may be reduced.’

Second, the study of inlet diffusers of constant internal

cross gection can be restricted to wy : w, : W, ., and 8, but not

on ‘the forms considered here. Ruden's diffusers indicate considerable
rogulating capacity and opesrate nearly without loss to the extent'

that the conversion of veloclty to pressure 1s essentially effected
upstream from the diffuser mouth. To forestall ‘sxcessive variatlons the
section enlargement must be done very carefully, that ls, the hodographic
pattern must not depart very much from Ruden's. In any case, constant
increage of speed along the curved part of the outslde contour must be
specified for the design operating condition, and the smallnegs of the
notch & (fig. 28) vouchss for the outside contour itself not
deviating perceptably from that by Ruden. To this extent the minimum
formula proved in this report is of practical significance 1n splte of
the limitation to constant cross ssctions. Forms with cross-sectional
enlargments are to be discussed in a subsegquent report.

Translated by J. Vanler
National Advisory Committee
for Aeronautics
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Figure 1,- Schematical representation of the diffuser contours and
corresponding flow,

Figure 2.- Schematical representation of a flow in the parallel strip.
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Figure 3.- By dz/dc the parallel strip is mapped to a region
symmetrical with respect to the real axis bounded by an
ellipse, a finite and an infinite piece of the real axis.
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Figure 4,- By t=e"% the parallel strip is mapped to a plane
' that is cut along the negative half of the real axis., The two
boundary pieces corresponding to the interval (-to, -t]) will
later yield the curved parts of the diffuser contour.

1

Figure 5.- 'dz/d§ [ plotted against t(t < 0) for various values of
B(t; and tg fixed).
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Figure 8a,b.-- Maximum velocity is reached either at a sharp bend
of C(a) or at a point of the central arc (b).



NACA ™ 1267 63

\ "',,/
.J"‘ \\ \ ////IIII

" 0,‘,.'{{//// 7 _9 e) \ \ ig i>-< //

Figure 9a,b.- If w, .. 1Isto stay beneath a certain limit, the curve C
must not approach the t-axis too closely., For fixed values of wjy
and w_(a), as well as for variable values of w; and w,(b), there

always results a space bounded by three straight lines from which C
must not emerge.
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Figure 10.- The favorable effective range of a Ruden inlet diffuser is

given by (;}:) < %E: §<¥i—) . The figure represents the two
0

boundaries as functions of Wy, /W, and 8. The curves
<Wi /w°°>o = const. show in the nelghborhood of Wy gy /W, = 1

a variation similar to the curves (w; /W‘”>u = const, They are not

fully drawn for reasons of clarity.
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Figure 11

Figures 11~14.- Pressure-~distribution curves for a Ruden inlet
diffuser, Normal operating condition: w;/w, =0.4;
Wonax/We = 1.2. The solid curves represent the theoretical
pressure distribution along the outer wall, the dashed curves

the theoretical pressure distribution along the inner wall.,
The circles correspond to the measured values.
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Figure 12,
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Figure 14.
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Figure 15.-

The velocities at the end points of the nose of Ruden’s
inlet diffuser IT as functions of wj/w,. At the top is shown one
half of the diffuser with points a and b.
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Figure 16.- Inlet diffusers of the third type for various values of the
parameter p. t; =0.127; tg = 7.873,
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Figure 17.- Maximum velocities for the diffusers shown in figure 16,
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Figures 18-20,~ Pressure-distribution curves for the inlet diffuser
B =0.4 of figure 16,
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Figure 10.
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Figure 20.

Figure 21.- For calculation of Wy, 54.
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Figure 24.
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Figure 28.



